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We consider combinatorial optimization problems defined over
random ensembles and study how solution cost increases when
the optimal solution undergoes a small perturbation �. For the
minimum spanning tree, the increase in cost scales as �2. For the
minimum matching and traveling salesman problems in dimension
d > 2, the increase scales as �3; this is observed in Monte Carlo
simulations in d � 2, 3, 4 and in theoretical analysis of a mean-field
model. We speculate that the scaling exponent could serve to
classify combinatorial optimization problems of this general kind
into a small number of distinct categories, similar to universality
classes in statistical physics.

The interface of statistical physics, algorithmic theory, and
mathematical probability is an active research field, contain-

ing diverse topics such as mixing times of Glauber-type dynamics
(ref. 1 and many others), reconstruction of broadcast informa-
tion (2), and probabilistic analysis of paradigm computational
problems such as k-SAT (3–5). In this article we introduce an
article topic whose motivation is simpler than those.

Freshman calculus tells us that, for a smooth function F : �3
� attaining its minimum at x*, for x near x* the relation between
� � �x � x*� and � � F(x) � F(x*) is � � (1�2)F�(x*)�2. If instead
we consider a function F : �d 3 � on d-dimensional space,
sophomore calculus tells us that similarly

inf{F�x� � F�x*� : �x � x*� � �} � c�2

for appropriate c. So in a sense the scaling exponent 2 is naturally
associated with ‘‘smooth’’ or ‘‘regular’’ optimization problems.

Now consider a graph-based combinatorial optimization prob-
lem, such as the traveling salesman problem (TSP): each feasible
solution has n constituents (edges) and associated continuous
costs (lengths), the sum of which gives the overall solution cost.
Compare an arbitrary feasible solution x with the optimal
(minimal) solution x*, unique, which for generic lengths is
unique, by the two quantities

�n�x� � �number of edges in x but not in x*��n

�n�x� � �cost difference between x and x*��s�n�,

where s(n) expresses the rate at which the optimal cost scales in
n. Define �n(�) to be the minimum value of �n(x) over all feasible
solutions x for which �n(x) � �. Although the function �n(�) will
depend on n and the problem instance, we anticipate that for
typical instances drawn from a suitable probability model it will
converge in the n3 	 limit to some deterministic function �(�).

The universality paradigm from statistical physics suggests
there may be a scaling exponent a such that

���� � �a as � 3 0,

and that the exponent should be robust under model details. In
statistical physics, universality classes are typically defined by
critical exponents that characterize the behavior of measurable
quantities both near and at a phase transition. Although a is not
a critical exponent here, and there is no phase transition, we
suggest that it could play a similar role, categorizing combina-

torial optimization problems into a small set of classes. If our
analogy with freshman calculus is apposite, we expect that the
simplest problems should have scaling exponent 2.

This approach may seem obvious in retrospect and fits within
a long-standing tradition in the physical sciences (see Discus-
sion). However, it has never been proposed or studied explicitly.
In this article we report on three aspects of our program. For the
minimum spanning tree (MST), a classic ‘‘algorithmically easy’’
problem solvable to optimality by greedy methods, we confirm
that the scaling exponent is indeed 2. We then turn to two harder
problems: minimum matching (MM) and the TSP. Under a
mean-field model, our mathematical analysis methods combined
with numerics show that the scaling exponent is 3 for both MM
and TSP, independent of the pseudo-dimension defined below.
For the Euclidean model the exponent is 2 in the (essentially
trivial) 1D case, while Monte Carlo simulations suggest it is 3 in
higher dimensions.

Models
In the Euclidean model we take n random points in a d-
dimensional cube whose volume scales as n. Interpoint lengths
are Euclidean distances. To reduce finite-size effects, we take
the space to have periodic (toroidal) boundary conditions when
calculating the distances.

In the mean-field or random link model we imagine n random
points in some abstract space such that the (2

n) vertex pair lengths
are i.i.d. random variables distributed as nl�dl, with probability
density p(l) 
 ld�1 for small l. Here 0 � d � 	 is the
pseudo-dimension parameter and the distribution of small single
interpoint lengths mimics that in the Euclidean model of cor-
responding dimension d, up to a proportionality constant. Both
models are set up so that nearest-neighbor distances are of order
1 and the scaling of overall cost in the optimization problems is
s(n) � n.

A Simple Case: The MST
For the MST, given any reasonable model of interpoint lengths
including the two models above, we expect a scaling exponent of
2. We will provide a rigorous account elsewhere, but the
underlying idea is simple. The classical greedy algorithm gives
the following explicit inclusion criterion for whether an edge e �
(v1, v2) of a graph belongs in the MST. Consider the subgraph
containing edges between any two vertices within length t of each
other. Let perc(e) � length(e) be the smallest t that keeps v1 and
v2 within the same connected component. It is not difficult to see
that e � MST if and only if length(e) � perc(e).

Given a probability model for n random points and their
interpoint lengths, define a measure �n(x) on x � (0, 	) in terms
of the expectation
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�n�x� �
1
n

E��edges e: 0 � length�e� � perc�e� � x��.

For any reasonable model we expect an n 3 	 limit measure
�(x), with a density 	(x) � d��dx having a nonzero limit 	(0�).

Now modify the MST by adding an edge e with length(e) �
perc(e) � b, for some small b, to create a cycle: then delete the
longest edge e
 � e of that cycle, which necessarily has
length(e
) � perc(e). This gives a spanning tree containing
exactly one edge not in the MST and having length greater by b.
Repeat this procedure with every edge e for which 0 �
length(e) � perc(e) � 
, for some small 
. The number of such
edges is n�(
) � n	(0�)
 to first order in 
, and as there is
negligible overlap between cycles, each of the new edges will
increase the tree length by 

�2 on average. So

��
� � 	�0��
, ��
� � 	�0��
2�2.

This construction must yield essentially the minimum value of �
for given �, so the scaling exponent is 2.

Poisson Weighted Infinite Tree (PWIT)
We now consider the MM and TSP. In MM, we ask for the
minimum total length Ln of n�2 edges matching n random points
and study the normalized limit expectation limn3	 (2�n)E[Ln].
Taking the mean-field model with d � 1 for simplicity, the limit
value �2�6 was obtained in ref. 6 by using the replica method
from statistical physics. We work in the framework of ref. 7,
which rederives this limit rigorously by doing calculations within
an n � 	 limit structure, the PWIT.

Briefly, the PWIT is an infinite degree rooted tree in which the
edge weights (lengths) at each vertex are distributed as the
successive points 0 � �1 � �2 �. . . of a Poisson process with a
mean number xd of points in [0, x], i.e., a process with rate
increasing as d xd�1. In this way, the PWIT corresponds to the
mean-field model at a given d (see ref. 8 for review).

Consider a matching on an instance of a rooted PWIT, as well
as a matching on the same instance but with the root removed,
as shown in Fig. 1. Introduce the variable

X � length of optimal matching on tree with root

� length of optimal matching on tree without root.

Both lengths are infinite, so this is interpreted as a limit of finite
differences. If Xi is the analogous quantity for the ith constituent
subtree of the rootless PWIT instance and �i the length of the
root’s ith edge, these variables satisfy the recursion

X � min
1�i�	

��i � Xi�. [1]

Now take the {�i} to be the Poisson-distributed edge lengths
and the {Xi} to be independent random variables from the same

random process that produces X. Eq. 1 is then a distributional
equation for X and can be shown (7) for d � 1 to have as its
unique solution the logistic distribution

P�X � x� �
1

1 
 e�x, �	 � x � 	. [2]

The PWIT structure further leads to the following inclusion
criterion. Consider an edge of length x in the tree, and the two
subtrees formed by deleting that edge. The memoryless nature
of the Poisson process allows us to consider each of these
subtrees as independent copies of a PWIT, with their roots at the
vertices of the deleted edge. It may be seen that including the
edge in the optimal matching incurs a cost of x � X1 � X2, where
X1 and X2 are the X variables as defined above, but for the two
subtrees. Thus, an edge of length x is present in the minimal
matching if and only if

x � X1 
 X2. [3]

The probability density function for edge lengths in the MM
is then

f�x� � P�x � X1 
 X2�, 0 � x � 	.

Here X1 and X2 are independent random variables distributed
according to Eq. 2, from which the mean edge length can be
calculated:

�
0

	

xP�x � X1 
 X2�dx � �2�6.

Mean-Field MM and TSP
The previous section summarized analysis from ref. 7; now we
continue with new analysis. To study scaling exponents, we
introduce a parameter � � 0 that plays the role of a Lagrange
multiplier. Penalize edges used in the optimal matching by
adding � to their length. Let us study optimal solutions to the
MM problem on this new penalized instance. Precisely, on a
realization of the PWIT, define Y and Z as

length of optimal matching on new tree with root

� length of optimal matching on new tree without root,

where Y and Z differ in the definition of the edge lengths of the
new tree: for Y, the edges penalized are those used by the original
rooted optimal matching: for Z, they are those used by the
original rootless optimal matching.

For the penalized problem the recursion Eq. 1 for X is
supplemented by the following recursions for (X, Y, Z) jointly.
Let i* be the value of i that minimizes � i � Xi. Then

Y � min
i

��i � �Zi 
 ��1�i � i*� � Yi1�i � i*��

Z � min
i

��i � Yi�,

where, as before, the {Yi} and {Zi} are independent random
variables from the same random process producing Y and Z.

Moreover, we get an inclusion criterion, analogous to Eq. 3: an
edge of length x is included if and only if

x 
 � � Z1 
 Z2 if edge used in optimal matching

x � Y1 
 Y2 if edge not used in optimal matching.

Fig. 1. Matching on a PWIT with (a) and without (b) root node. Numbers
represent edge weights (lengths).
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In terms of the expected unique joint distribution for (X, Y, Z),
the quantities � and � that compare the penalized solution (as a
nonoptimal solution of the original problem) with the original
optimal solution are

���� � �
0

	

P�edge of length x is in optimal penalized
matching but not in optimal matching} dx

� �
0

	

P�X1 
 X2 � x � Y1 
 Y2� dx

and

���� � �
0

	

x P�edge of length x is in optimal
penalized matching} dx � �2�6

� �
0

	

x�P�x � X1 
 X2, x � Z1 
 Z2 � ��


 P�X1 
 X2 � x � Y1 
 Y2�� dx � �2�6.

By the theory of Lagrange multipliers these functions �(�), �(�)
determine �(�). We do not have explicit analytic expressions
analogous to Eq. 2 for the joint distribution of (X, Y, Z) in terms
of �. However, we can use routine bootstrap Monte Carlo
simulations to simulate the distribution and thence estimate the
functions �(�) and �(�) numerically. And as indicated in refs. 7,
9, and 10 the mean-field MM and the mean-field TSP can be
studied by using similar techniques; the TSP analysis is just a
minor variation of the MM analysis. For instance, recursion Eq.
1 becomes

X � min
1�i�	

�2���i � Xi�,

where min[2] denotes second minimum.
Table 1 reports numerical results showing good agreement

with � 	 �3 in both problems for d � 1. These numerics
are compatible with independent MM results obtained re-
cently (11), as well as with our direct simulations on mean-field
TSP instances at n � 512. The same exponent 3 arises for
other d.

Euclidean MM and TSP
We consider the d � 1 case where the scaling exponent can be
found exactly and give numerical results for other cases. We
restrict the discussion to the Euclidean TSP, although as for the
mean-field model, MM is phenomenologically similar.

Take the Euclidean TSP in d � 1, with periodic boundary
conditions. The optimal tour here is trivial (with high probability
a straight line of length n) but nevertheless instructive to analyze.
As before, add a penalty term � to each edge used in the tour and
consider how the optimal tour changes in this new penalized
instance. When � is small, changes to the tour will consist of
‘‘2-changes’’ shown in Fig. 2 and will occur when an original edge
length is � �. A simple nearest-neighbor distance argument gives
the distribution of edge lengths in the original tour as p(l) 
 e�l.
Since two edges are modified in each 2-change,

���� � 2�
0

�

p�l�dl � 2�, ���� � 2�
0

�

lp�l�dl � �2.

The scaling exponent of 2 is not surprising, as the 1D TSP
behaves very similarly to the 1D MST on penalized instances.
Furthermore, it is consistent with the intuition that the ‘‘easiest’’
problems scale in this way. A similar argument applies to MM,
and in both cases a more rigorous analysis yields bounds on � and
� that confirm the exponent.

For d � 1, numerical results are shown in Fig. 3. These have
been obtained by finding exact solutions to randomly generated
n � 512 Euclidean instances in d � 2, 3, 4, using the CONCORDE
TSP solver available at www.math.princeton.edu�tsp�concorde.
html. For each instance, the optimum was obtained on the
original instance as well as on the instance penalized with a range
of � values. For each � value, �(�) and �(�) were averaged over
the sample of instances. The resulting numerics are closely
consistent with a scaling exponent of 3 (in spite of suffering from
some finite-size effects at smaller �), suggesting that the mean-
field picture gives the correct exponent in all but the trivial 1D
case. In the language of critical exponents, this would correspond
to an ‘‘upper critical dimension’’ of 2.

Table I. Scaling for mean-field MM and TSP in pseudo-dimension
d � 1, obtained by simulating joint distribution of (X, Y, Z)

�

MM TSP

� � 2.3�3 � � 2.0�3

0.02 0.112 0.004 0.003 0.128 0.009 0.006
0.04 0.156 0.010 0.009 0.175 0.015 0.011
0.06 0.190 0.017 0.016 0.212 0.023 0.019
0.08 0.219 0.024 0.024 0.243 0.030 0.029
0.10 0.244 0.035 0.033 0.270 0.042 0.039
0.12 0.267 0.042 0.044 0.300 0.053 0.051
0.14 0.287 0.053 0.054 0.318 0.065 0.064
0.16 0.306 0.067 0.066 0.340 0.077 0.079
0.18 0.323 0.080 0.078 0.360 0.091 0.093
0.20 0.340 0.089 0.090 0.379 0.104 0.109

Results show a good fit to � 
 2.3�3 and 2.0�3. In more detail, � scales as �1�2

while � scales as �3�2. Estimates for � have standard deviation of �0.001 for MM
and 0.003 for TSP.

Fig. 2. 2-change schematic. Original optimal tour is shown by dashed line.
New optimal tour on penalized instance is shown by solid line: over sufficiently
short lengths, tour doubles back to avoid using penalized edges.

Fig. 3. Scaling for Euclidean TSP in d � 2, 3, 4, based on exact solutions for 100
instances in each case. Data points correspond to � values from 0.004 to 0.05.
Slopes of best-fit lines vary from 2.94 to 3.24. Standard deviation is �3 � 10�3

for � and 3 � 10�5 for �.
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Discussion
The goal of our scaling study has been to address a new kind of
problem in the theory of algorithms, using concepts from
statistical physics. Traditionally, work on the TSP within the
theory of algorithms (12) has emphasized algorithmic perfor-
mance, rather than the kinds of questions we ask here. Rigorous
study of the Euclidean TSP model within mathematical proba-
bility (13) has yielded a surprising amount of qualitative infor-
mation: existence of an n 3 	 limit constant giving the mean
edge-length in the optimal TSP tour (14), and large deviation
bounds for the probability that the total tour length differs
substantially from its mean (15). However, calculation of explicit
constants in dimensions d � 2 seems beyond the reach of analytic
techniques. For the mean-field bipartite MM problem, impres-
sive recent work (26, 27) has proven an exact formula giving the
expectation of the finite-n minimum total matching length,
though such exact methods seem unlikely to be widely feasible.

On the other hand, there has been significant progress over the
past 20 years in the use of statistical physics techniques on
combinatorial optimization problems in general. Finding opti-
mal solutions to these problems is a direct analog to determining
ground states in statistical physics models of disordered systems
(16). This observation has motivated the development of such
approaches as simulated annealing (17), the replica method (18),
and the cavity method (4). Condensed matter physics, particu-
larly models arising in spin glass theory, has provided a powerful
means to study algorithmic problems: at the same time, algo-
rithmic results have implications for the associated physical
models. It is instructive to consider our work in that context.

Researchers in the physical sciences have long been interested
in the low-temperature thermodynamics (18, 19) of disordered
systems, investigating properties of near-optimal states in
spin glass models. Our procedure for studying near-optimal
solutions by way of a penalty parameter is similar to a method,
known as �-coupling (20–22), used for calculating low-energy
excitations in spin glasses. Making use of this method, physicists
have obtained quantities closely analogous to our scaling expo-
nents for models of RNA folding (22). Furthermore, in the
last year independent work (11) has explored �-coupling on
MM, numerically identifying a different but related scaling
exponent.

For the TSP, analytical and numerical studies were performed
�15 years ago (23, 24) on the thermodynamics of the model, with
overlap quantities calculated for near-optimal solutions. The
results have suggested that at low temperature T, the cost excess
� scales as T2 while the average fraction of differing edges
between solutions (1 � q, with q being the ‘‘overlap fraction’’)
scales as T. This leads to � 
 (1 � q)2, in apparent contradiction
with our exponent of 3. However, at low temperatures, q
represents overlaps between typical near-optimal solutions,
whereas our � measures overlaps between a near-optimal solu-
tion and the optimum. The different definitions of these two
quantities could account for the discrepancy in scaling exponent:
it is not surprising that 1 � q grows faster than � as one considers
solutions of increasing cost. At the same time, a possible
implication of these results is that at low temperature, � 
 T2�3.
We are not aware of any direct theoretical arguments to explain
this and consider it an intriguing open question.

It is also important to note that the underlying property � 3
0 as �3 0 cannot always be taken for granted. This property is
called asymptotic essential uniqueness (AEU) (7). AEU re-
quires, among other things, that the optimum itself be unique. In
principle, even if it is not, one could still analyze near-optimal
scaling by considering sufficiently local perturbations from a
given optimum. It is natural to expect the resulting exponent to
be independent of the specific optimum chosen. However, this
may not be true in the event of what statistical physicists call

replica symmetry breaking (RSB) (18, 19). AEU is a special case
of replica symmetry, so while RSB implies the absence of AEU,
the absence of AEU does not necessarily imply RSB. A current
debate in condensed matter literature concerns whether or not
low-temperature spin glasses display RSB (20, 21, 25). It is
generally believed that RSB is incompatible with unique nonzero
values of various scaling exponents. Thus, the correct approach
to analyzing near-optimal scaling in such problems remains
another open question.

One final example may serve to illustrate the diversity of
possible applications for our type of scaling analysis, as well as
an instance where the absence of AEU is surmountable. In
oriented percolation on the 2D lattice, there are independent
random traversal times on each oriented (up or right) edge. The
percolation time Tn is the minimum, over all ( n

2n) paths
from (0, 0) to (n, n), of the time to traverse the path. So
(2n)�1E[Tn]3 t*, a time constant. It is elementary that there will
be near-optimal paths, with lengths T
n such that n�1 (E[T
n] �
E[Tn])3 0 and which are almost disjoint from the optimal path.
So our �(�) analysis applied to paths will not be useful: even with
a unique optimum, AEU will not hold. But we can rephrase the
problem in terms of flows. A flow on the n � n oriented torus
assigns to each edge a flow of size � [0, 1], such that at each
vertex, in-f low equals out-f low. Let t(�) be the minimum, over
all f lows with mean flow-per-edge � �, of the flow-weighted
average edge traversal time. In the n3	 limit, one can show that
as � 3 0, t(�) 3 t* where t* is the same limiting constant as
before. We therefore expect a scaling t(�) � t* 
 �a. Mean field
analysis gives the scaling exponent a � 2, and Monte Carlo study
of the d � 2 case is in progress.

Conclusions
We have studied the scaling of the relative cost difference �
between optimal and near-optimal solutions to combinatorial
optimization problems, as a function of the solution’s relative
distance � from optimality. This kind of scaling study, although
well accepted in theoretical physics, is new to combinatorial
optimization. For the MST, we have found � 
 �2. For the MM
and TSP, in the 1D Euclidean case � 
 �2 as well, while in both
the mean-field model and higher Euclidean dimensions � 
 �3.

The scaling exponent may categorize combinatorial optimi-
zation problems into a small number of classes. The fact that
MST is solvable by a simple greedy algorithm, and that the 1D
case of the MM and TSP is essentially trivial, suggests that a
scaling exponent of 2 characterizes problems of very low com-
plexity. The exponent of 3 characterizes problems that are
algorithmically more difficult. Of course, this is a different kind
of classification from traditional notions of computational com-
plexity: MM is solvable to optimality in O(n3) time whereas the
TSP is in the NP-hard class. Rather, these exponent classes are
reminiscent of universality classes in statistical physics, which
unite diverse physical systems exhibiting identical behavior near
phase transitions.

A key question in the study of critical phenomena is whether
mean-field models correctly describe phase transition behavior
in the geometric models they approximate. The TSP and MM do
not involve critical behavior, but the fact that mean-field and
geometric scaling exponents coincide for d � 2 is significant. It
provides evidence that in a combinatorial setting, the mean-field
approach can give a valuable and accurate description of the
structure of near-optimal solutions.
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